Sistem Persamaan Linear
Contoh Soal
3x3 + 5x1 = 7
2x2 + 3x3 = 9
4x2 = 11
a. Ubahlah sistem persamaan linear tersebut menjadi matriks A . x = B
b. Carilah x1, x2 dan x3 menggunakan metode Invers, metode Crammer, metode Gauss, dan metode Gauss-Jordan !
Jawaban :
a.
A x B
b.
0 0 -15 x 9
0 -20 10 11
-60
= -84 + 108 + (-66)
0 + 0 + (-165)
0 + (-180) + 110
-60
= -42 -42 / -60
-165 atau -165 / -60
-70 -70 / -60
-60
x1 7 / 10
x2 = 11 / 4
x3 7 / 6
0 4
= (5 x 2 x 0) + (0 x 3 x 0) + (3 x 0 x 4) - (3 x 2 x 0) - (5 x 3 x 4) - (0 x 0 x 0)
= (7 x 2 x 0) + (0 x 3 11) + (3 x 9 x 4) - (3 x 2 x 11) - (7 x 3 x 4) - (0 x 9 x 0)
= (5 x 9 x 0) + (7 x 3 x 0) + (3 x 0 x 11) - (3 x 9 x 0) - (5 x 3 x 11) - (7 x 0 x 0)
0 4
= (5 x 2 x 11) + (0 x 9 x 0) + (7 x 0 x 4) - (7 x 2 x 0) - (5 x 9 x 4) - (0 x 0 x 11)
= 110 + 0 + 0 - 0 - 180 - 0
= -70
Solusi x1 = det x1
det A
= -42 / -60
= 7 / 10
x2 = det x2
det A
= -165 / -60
= 11 / 4
x3 = det x3
det A
= -70 / -60
= 7 / 6
H2 (1/2) H32 (-4)
H3 (-1/2)
Persamaan 3 = x3 = 7 / 6
Persamaan 2 = x2 + 3 / 2 (x3) = 9 / 2
x2 + 3 / 2 (7 / 6) = 9 / 2
x2 + 21 / 12 = 9 / 2
x2 = 9 / 2 - 21 / 12
x2 = 54 - 21
12
x2 = 33 / 12
x2 = 11 / 4
Persamaan 1 = x1 + 0 (x2) + 3 / 5 (x3) = 7 / 5
x1 + 0 (11 / 4) + 3 / 5 (7 / 6) = 7 / 5
x1 + 0 + 21 / 30 = 7 / 5
x1 = 7 / 5 - 21 / 30
x1 = 42 - 21
30
x1 = 21 / 30
x1 = 7 / 10
H2 (1/2) H32 (-4)
H3 (-1/2) H13 (-3/5)
H23 (-3/2)
Persamaan 3 = x3 = 7 / 6
Persamaan 2 = x2 = 11 / 4
Persamaan 1 = x1 = 7 / 10
3x3 + 5x1 = 7
2x2 + 3x3 = 9
4x2 = 11
a. Ubahlah sistem persamaan linear tersebut menjadi matriks A . x = B
b. Carilah x1, x2 dan x3 menggunakan metode Invers, metode Crammer, metode Gauss, dan metode Gauss-Jordan !
Jawaban :
a.
A x B
b.
- Metode Invers
A-1 = adj A x B
det A= -12 12 -6 7
0 0 -15 x 9
0 -20 10 11
-60
= -84 + 108 + (-66)
0 + 0 + (-165)
0 + (-180) + 110
-60
= -42 -42 / -60
-165 atau -165 / -60
-70 -70 / -60
-60
x1 7 / 10
x2 = 11 / 4
x3 7 / 6
- Metode Crammer
det A =
0 25 0
0 4
= (5 x 2 x 0) + (0 x 3 x 0) + (3 x 0 x 4) - (3 x 2 x 0) - (5 x 3 x 4) - (0 x 0 x 0)
= 0 + 0 + 0 - 0 - 60 - 0
= -60
det x1 =7 0
9 2
11 4
= (7 x 2 x 0) + (0 x 3 11) + (3 x 9 x 4) - (3 x 2 x 11) - (7 x 3 x 4) - (0 x 9 x 0)
= 0 + 0 + 108 - 66 - 84 - 0
= -42
det x2 =5 7
0 9
0 11
= (5 x 9 x 0) + (7 x 3 x 0) + (3 x 0 x 11) - (3 x 9 x 0) - (5 x 3 x 11) - (7 x 0 x 0)
= 0 + 0 + 0 - 0 - 165 - 0
= -165
0 2det x3 =5 0
0 4
= (5 x 2 x 11) + (0 x 9 x 0) + (7 x 0 x 4) - (7 x 2 x 0) - (5 x 9 x 4) - (0 x 0 x 11)
= 110 + 0 + 0 - 0 - 180 - 0
= -70
Solusi x1 = det x1
det A
= -42 / -60
= 7 / 10
x2 = det x2
det A
= -165 / -60
= 11 / 4
x3 = det x3
det A
= -70 / -60
= 7 / 6
- Metode Gauss
H1 (1/5)
H2 (1/2) H32 (-4)
H3 (-1/2)
Persamaan 2 = x2 + 3 / 2 (x3) = 9 / 2
x2 + 3 / 2 (7 / 6) = 9 / 2
x2 + 21 / 12 = 9 / 2
x2 = 9 / 2 - 21 / 12
x2 = 54 - 21
12
x2 = 33 / 12
x2 = 11 / 4
Persamaan 1 = x1 + 0 (x2) + 3 / 5 (x3) = 7 / 5
x1 + 0 (11 / 4) + 3 / 5 (7 / 6) = 7 / 5
x1 + 0 + 21 / 30 = 7 / 5
x1 = 7 / 5 - 21 / 30
x1 = 42 - 21
30
x1 = 21 / 30
x1 = 7 / 10
- Metode Gauss-Jordan
H1 (1/5)
H2 (1/2) H32 (-4)
H3 (-1/2) H13 (-3/5)
H23 (-3/2)
Persamaan 3 = x3 = 7 / 6
Persamaan 2 = x2 = 11 / 4
Persamaan 1 = x1 = 7 / 10
Komentar